Hallosemuanya, kali ini kita akan membahas dan belajar tentang materi pembelajaran pada tingkat SMA/MA sederajat. Akan saya buat playlist Materi SMA/MA deng Padakesempatan ini saya membagikan cara untuk menemukan minor, Kofaktor, dan adjoin. Materi ini sangat penting untuk dikuasai dalam matriks. Pada contoh ini Sebelumsaya membahas perihal rumus invers matriks ordo 2x2 dan ordo 3x3 beserta tumpuan soal invers matriksnya. Invers matriks 2x2 dan 3x3 beserta contoh soalnya invers matriks ordo 3Γ—3. Contoh soal invers ordo 22 brainly co id. Cara mencari invers matriks ordo 2x2, cara mencari invers matriks ordo 3x3, contoh soal invers matriks dan Suka. Contoh Soal Invers Matriks Ordo 4x4 Dan Pembahasannya Contoh Soal Terbaru anda harus kembali mengingat bagaimana menyatakan entri suatu matriks dan pastikan anda telah bisa mencari determinan matriks 3x3 dan 2x2 agar lebih mudah. Cara menghitung determinan 4x4 metode sarrus terdiri dari 4 langkah. Setelah memahami mengenai pengertian zoxJFa. Selislih antara perkalian elemen-elemen pada diagonal utama dengan diagonal sekunder pada matriks persegi disebut determinan matriks. Simbol determinan matriks adalah tanda nama matriks atau detnama matriks, misalnya determinan matriks A dituliskan dalam simbol A atau detA. Determinan matriks hanya terdapat pada matriks persegi, misalnya determinan matriks 3Γ—3. Matriks adalah kumpulan beberapa bilangan yang disusun dalam baris dan kolom di dalam tanda kurung atau kurung siku [ ]. Ukuran matriks ordo dinyatakan dalam baris Γ— kolom, sehingga matriks dengan ukuran 3Γ—1 memiliki bentuk yang berbeda dengan matriks ukuran 1Γ—3. Matriks persegi adalah matriks yang memiliki jumlah baris sama dengan jumlah kolom disebut dengan. Pada matriks dengan jumlah baris dan kolom sama dengan dua merupakan matriks persegi ordo 2. Sedangkan matriks persegi dengan jumlah baris dan kolom sama dengan 3 disebut matriks berordo 3, begitu seterusnya. Sehingga determinan matriks 3Γ—3 adalah nilai determinan dari matriks persegi yang memiliki jumlah elemen baris = kolom = 3. Cara Menentukan determinan pada matriks persegi dengan ukuran 2 x 2 cukup mudah dilakukan yaitu dengan menghitung selisih perkalian bilangan antara diagonal utama dengan diagonal sekunder. Diagonal utama adalah bilangan-bilangan pada garis diagonal yang ditarik dari sisi kiri atas ke kanan bawah matriks. Sedangkan diagonal sekunder adalah bilangan-bilangan pada garis diagonal yang ditarik dari sisi kanan atas ke kiri bawah matriks. Sedangkan pada cara menentukan determinan matriks 3Γ—3 memerlukan perhitungan yang lebih rumit dan ditidak semuah perhitungan determinan matriks 2Γ—2. Cara yang dapat digunakan untuk menentukan determinan matriks 3Γ—3 adalah metode kofaktor dan aturan Sarrus. Bagaimana cara menentukan determinan matriks 3Γ—3 dengan metode kofaktor? Bagaimana cara menentukan determinan matriks 3Γ—3 dengan aturan Sarrus? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Baca Juga Perkalian Matriks 2Γ—2, 3Γ—3, dan mxn dengan nxm Determinan Matriks 3Γ—3 dengan Metode Kofaktor Ada cara lain yang dapat digunakan untuk menentukan nilai determinan dari suatu matriks persegi dengan ordo 3 x 3 yaitu metode minor-kofaktor. Rumus umum yang berlaku pada metode kofaktor terdapat dalam sebuah teorema yang telah terbukti kebenarannya. Bunyi dari teorema untuk nilai determinan matriks persegi berordo n terdapat seperti pernyataan berikut. Teorema Determinan matriks A yang berukuran n x n dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap 1 ≀ i ≀ n dan 1 ≀ j ≀ n, maka detA = a1jC1j + a2jC2j + … + anjCnjekspansi kofaktor sepanjang kolom ke-j Atau detA = ai1Ci1 + ai2Ci2 + … + ainCinekspansi kofaktor sepanjang baris ke-i Dari teorema di atas disinggung kofaktor yang definisinya diberikan seperti berikut. Definisi Jika A adalah matriks kuadrat, maka minor entri aij dinyatakan oleh Mij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Kofaktor entri aij dinyatakan dalam persamaan Cij = –1i+jMij Untuk mempermudan pemahaman sobat idschool, perhatikan bagaiaman menentukan minor entri aij dan kofaktor entri aij pada matriks A berikut. Selanjutnya, nilai determinan matriks A dapat ditentukan melalui persamaan detA = a11C11 + a12C12 + a13C13. Perhatikan cara menentukan determinan matriks 3Γ—3 berikut. Baca Juga Penggunaan Matriks untuk Menyelesaikan Sistem Persamaan Linear Aturan Sarrus untuk Menentukan detA Aturan Sarrus merupakan kasus khusus dari metode kofaktor yang terdapat pada matriks berukuran 3 x 3. Perhatikan kembali komponen susunan bilangan pada matriks A. Minor entri a11, a12, dan a13 yaitu M11, M12, dan M13 memenuhi persamaan-persamaan berikut. Sehingga kofaktor untuk a11, a12, dan a13 diberikan seperti persamaan C11, C12, dan C13 berikut. C11 = –11+1 β‹… M11 = ei – fh C12 = –11+2 β‹… M12 = fg – di C13 = –11+3 β‹… M13 = dh – eg Sehingga diperoleh determinan matriks A seperti yang ditunjukkan pada langkah berikut. detA = a11C11 + a12C12 + a13C13detA = aei – fh + bfg – di + cdh – ge= aei – afh + bfg – bdi + cdh – ceg= aei + bfg + cdh – ceg – afh – bdi Untuk memudah mengingat persamaan umum pada Aturan Sarrus perhatikan cara berikut. Penggunaan Aturan Sarrus untuk menentukan nilai determinan matriks persegi dengan ordo 3 dapat dilihat seperti langkah-langkah berikut. Penyelesaian detA = AA = 4Γ—4Γ—4 + 3Γ—2Γ—3 + 5Γ—1Γ—2 – 5Γ—4Γ—3 – 4Γ—2Γ—2 – 3Γ—1Γ—4A = 64+18+10–60–16–12 = 4 Diperoleh determinan matriks 3Γ—3 tersebut adalah detA = 4, Di mana nilainya sama dengan cara sebelumnya, bukan? Aturan Sarrus merupakan metode yang paling tepat digunakan untuk menentukan nilai determinan matriks persegi berordo 3. Untuk menghitung nilai determinan matriks dengan ordo lebih tinggi sepert 4Γ—4, 5Γ—5, atau yang lebih tinggi dapat menggunakan metode kofaktor atau kombinasi Aturan Sarrus dan metode kofaktor. Demikianlah tadi ulasan cara menentukan determinan matriks 3Γ—3 dengan metode kofaktor dan Aturan Sarrus. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Jenis-Jenis Matriks Hai Quipperian, apakah kamu masih ingat materi tentang matriks? Membahas masalah matriks, jangan ciut nyali dulu ya. Sebenarnya, matriks itu mudah asal kamu giat untuk memahaminya. Saat membahas matriks, ada dua besaran yang tak boleh terlewatkan, yaitu determinan dan invers. Apa sih determinan dan invers matriks itu? Bagaimana pula cara mencarinya? Daripada penasaran, yuk simak artikel selengkapnya! Pengertian Determinan dan Invers Matriks Determinan adalah suatu nilai yang bisa ditentukan dari unsur-unsur matriks persegi. Jika bentuknya tidak persegi, tentu tidak bisa ditentukan determinannya. Matriks persegi adalah matriks yang jumlah baris dan kolomnya sama, contoh matriks 2 x 2 dan matriks 3 x 3. Lalu, apa yang dimaksud invers matriks? Invers matriks adalah kebalikan dari matriks awal dan dinyatakan sebagai matriks baru. Lalu, bagaimana cara menentukan determinan serta invers? Cara Menentukan Determinan Matriks Berikut ini akan dijabarkan cara menentukan determinan untuk beberapa matriks persegi. 1. Cara menentukan determinan matriks 2 x 2 Matriks 2 x 2 adalah matriks yang memiliki jumlah baris 2 dan jumlah kolom 2 seperti berikut. Cara menentukan determinannya cukup mudah, yaitu sebagai berikut. Lakukan perkalian elemen pada diagonal utama, yaitu ad. Lakukan perkalian elemen pada diagonal sekunder, yaitu bc. Kurangkan hasil perkalian diagonal utama dan diagonal sekunder, ad – bc. Dengan demikian, detP = ad – bc. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan determinan matriks ! Pembahasan Determinan matriks P bisa ditentukan seperti berikut. 2. Cara menentukan determinan matriks 3 x 3 Matriks 3 x 3 adalah matriks yang memiliki jumlah baris dan kolom sebanyak 3. Oleh karena jumlah baris dan kolomnya lebih banyak daripada matriks 2 x 2, maka cara menentukan determinannya juga lebih rumit. Ada beberapa cara yang bisa Quipperian gunakan untuk menentukan determinan matriks ini, yaitu sebagai berikut. Metode Sarrus Metode Sarrus termasuk salah satu metode paling mudah untuk menentukan determinan matriks. Langkah-langkahnya adalah sebagai berikut. Elemen matriks pada kolom ke-1 dan ke-2 ditulis kembali di belakang kolom ke-3. Lakukan perkalian menyilang yang melalui tiga elemen ke kanan bawah dimulai dari kolom paling depan kolom ke-1. Lalu, jumlahkan hasilnya sebagai x1. Lakukan perkalian menyilang melalui tiga elemen ke kiri bawah dari kolom paling belakang kolom ke-5. Lalu, jumlahkan hasilnya sebagai x2. Tentukan hasil determinannya dengan mengurangkan x1 dengan x2. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan determinannya dengan Metode Sarrus! Pembahasan Mula-mula, kamu harus menulis kembali kolom ke-1 dan ke-2 di belakang kolom ketiga. Lalu, lakukan perkalian menyilang dari kolom ke-1 ke arah kanan bawah. Lakukan langkah yang sama, namun dengan arah yang berlawanan. Terakhir, kurangkan hasil x1 dan x2. Jadi, determinan P adalah -12. Metode reduksi baris Metode reduksi adalah metode yang dilakukan dengan membuat elemen matriksnya berbentuk segitiga, umumnya segitiga atas seperti berikut. Segitiga atas yang dimaksud adalah nilai 0 di elemen a21, a31, dan a32. Jika kamu mendapatkan perintah untuk menggunakan metode reduksi baris, pastikan bahwa elemen-elemen tersebut bernilai 0. Lantas, bagaimana jika nilai awalnya tidak 0? Maka kamu harus mengoperasikan elemen antarbarisnya sedemikian sehingga nilai pada elemen a21, a31, dan a32 bernilai 0. Operasi antarbaris juga meliputi pertukaran antarbaris, misal baris ke-1 ditukar dengan baris ke-3. Jika terjadi pertukaran baris, kamu harus mengalikan matriks itu dengan -1. Perhatikan contoh berikut. Tentukan determinannya dengan metode reduksi baris! Pembahasan Di matriks tersebut sudah ada baris yang bernilai 0, yaitu pada a12. Kamu bisa menukarkan baris ke-1 dan baris ke-3 untuk memudahkan operasi bilangan di setiap elemen. Langkah selanjutnya adalah mengoperasikan sedemikian sehingga elemen a21 = 0, yaitu dengan melakukan penjumlahan antara B2 baris 2 dengan 4 kali B1 baris 1. Metode minor kofaktor Metode minor kofaktor adalah metode penentuan determinan matriks menggunakan minor kofaktor matriks. Mungkin, kamu lebih mengenalnya dengan metode tutup baris kolom. Secara matematis, rumus determinan matriks dengan minor kofaktor adalah sebagai berikut. Dengan C = kofaktor ke-ij dan M = minor ke-ij. Perhatikan contoh berikut. Tentukan determinannya dengan metode minor kofaktor. Mula-mula, kamu harus mencari C11, C12, dan, C13 seperti berikut. Nilai C11 Diperoleh Nilai C12 Diperoleh Nilai C13 Diperoleh Dengan demikian, determinan P dirumuskan sebagai berikut. Ternyata, hasil determinan P yang diperoleh dari metode Sarrus, metode reduksi baris, dan metode minor kofaktor sama lho. Untuk mengerjakan soal-soal serupa, pilihlah metode yang kamu anggap lebih mudah, ya. Cara di atas juga bisa diterapkan pada matriks ordo 4 x 4. Namun, pembahasan lengkap tentang determinan matriks 4 x 4 akan kamu jumpai di bangku perguruan tinggi. ☺ Cara Menentukan Invers Matriks Sama seperti determinan, untuk menentukan invers matriks, kamu bisa menggunakan beberapa metode. Salah satu metodenya melibatkan nilai determinan. Lantas, bagaimana cara menentukan invers matriks? Cara menentukan invers matriks 2 x 2 Untuk menentukan invers matriks 2 x 2 hanya ada satu cara, yaitu dengan persamaan berikut. Adjoin P diperoleh dengan menukar elemen matriks a11 dan a22, lalu mengalikan elemen matriks a12 dan a21 dengan -1. Perhatikan contoh berikut. Tentukan invers matriks P berikut. Pembahasan Mula-mula, kamu harus menentukan determinan matriksnya. Selanjutnya, tentukan adjoin P. Dengan demikian, invers matriks P bisa dinyatakan sebagai berikut. Cara menentukan invers matriks 3 x 3 Invers matriks 3 x 3 bisa ditentukan dengan dua cara, yaitu adjoin dan OBE operasi baris elementer. Apa perbedaan antara kedua cara itu? Metode adjoin Cara menentukan matriks 3 x 3 dengan adjoin dilakukan dengan mencari semua kofaktor di setiap elemen matriksnya. Cara mencari kofaktor sama dengan cara sebelumnya, yaitu dengan menutup baris dan kolom. Perhatikan contoh berikut. Tentukan invers matriks P tersebut dengan metode adjoin! Pembahasan Mula-mula, kamu harus mencari C11, C12, C13, sampai C33 seperti berikut. Nilai C11 Diperoleh Nilai C12 Diperoleh Nilai C13 Diperoleh Nilai C21 Diperoleh Nilai C22 Diperoleh Nilai C23 Diperoleh Nilai C31 Diperoleh Nilai C32 Diperoleh Nilai C33 Diperoleh Dengan demikian, kofaktor matriks P adalah sebagai berikut. Lalu, tentukan adjoin matriks P dengan mengubah elemen baris menjadi kolom seperti berikut. Jadi, invers matriks P adalah sebagai berikut. Sampai sini, apakah Quipperian sudah paham? Metode OBE operasi baris elementer Cara ini hampir sama dengan metode reduksi baris pada determinan. Bedanya, kamu harus mengarahkan matriksnya menjadi matriks identitas. Persamaan umum untuk menyelesaikan metode obe ini adalah sebagai berikut. Perhatikan contoh berikut. Tentukan invers matriks tersebut dengan metode obe! Pembahasan Mula-mula, kamu harus menentukan persamaan umumnya seperti berikut. Dari langkah yang sedemikian panjang, diperoleh invers matriks P yaitu sebagai berikut. Ternyata, hasil inversnya sama dengan invers matriks cara adjoin. Namun, cara OBE ini lebih panjang dan rumit. Dalam penerapannya, Quipperian bisa memilih cara yang dianggap lebih mudah, ya. Sampai sini, apakah Quipperian sudah paham bagaimana cara menentukan determinan dan invers matriks? Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk materi lengkapnya, bisa Quipperian lihat di Quipper Video. Yuk, buruan gabung biar ujian jadi lebih siap! Salam Quipper! ο»Ώcara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? 1. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? 2. buatkan matriks dengan ordo 3x3 dan carilah a minor b kofaktor c determinan 3. jawablah determinan matriks 3x3 berikut ini dengan metode kofaktor.​ 4. bagaimana cara perkalian matriks 3x3 sama dengan 3x2 dan sebaliknya 3x2 sama dengan 3x3?? 5. bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? 6. Cara mencari Adjoin dari Matriks ORDO 3x3 7. buatkan sebuah matrik dengan ordo 3x3 dan carilah a. minor b. kofaktor c. determinan 8. carilah minor matriks kofaktor adjoin dan invers dari matrik matrik berikut ​ 9. ada yang ngerti cara mencari x pada matriks singular ber ordo 3x3 ? 10. Bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? 11. Carilah minor, kofaktor, adjoin, dan invers dari matriks di bawah ini tolong bantuanya yaaa ☺ 12. 20 contoh soal dan jawabanya tentang determinan matriks ordo 3x3 metode kofaktor 13. Yang merupakan transpos dari kofaktor suatu matriks adalah 14. Carilah minor,kofaktor,adjoin dan invers dari matriks di bawah ini. tolong bantuanya yaaa 15. gimana cara menyelesaikan perkalian matriks ordo 3x3 dengan 3x3 1. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? memakai ekspansi baris atau kolom 2. buatkan matriks dengan ordo 3x3 dan carilah a minor b kofaktor c determinan ordo 3Γ—3 adalah kofaktor 3. jawablah determinan matriks 3x3 berikut ini dengan metode kofaktor.​ Jawaban A= -55Penjelasan dengan langkah-langkah=1.10+56 - 4.4+24 + 9.14-15= - + 9. -1=66 - 112 + -9= -55kalo salah maaf ya, ini saya pake cara cepat 4. bagaimana cara perkalian matriks 3x3 sama dengan 3x2 dan sebaliknya 3x2 sama dengan 3x3?? Salam BrainlySenin, 10 Desember 2018JawabPenjelasan dengan langkah-langkahPerkalian matriks ordo 3x3 degn 3x2 atau sebaliknya.. Tdk dapat dikalikan krna baris matriks ordo 3x3 tidak sama degn kolom matriks 3x2 5. bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? Jawaban6Penjelasan dengan langkah-langkah3Γ—3=6-0=6 gampang kan 6. Cara mencari Adjoin dari Matriks ORDO 3x3 1. Matriks Kofaktor2. Adjoin3. Nilai elemen4. rumus invers Matriks ordo 3 x 3 7. buatkan sebuah matrik dengan ordo 3x3 dan carilah a. minor b. kofaktor c. determinan ordi 3Γ—3 adalah kofaktora= 2 1 4 -1 3 2 1 4 5minora= 7 -7 -7 -11 6 7 -5 8 8kofaktor a= 7 7 -7 11 6 -7 -5 -8 8determinandet a = 14+7-28 = -7 8. carilah minor matriks kofaktor adjoin dan invers dari matrik matrik berikut ​ JawabPenjelasan dengan langkah-langkahkalo betul jaikan jawaban tercerdas y 9. ada yang ngerti cara mencari x pada matriks singular ber ordo 3x3 ? matriks singular itudeterminan matriks = 0 10. Bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? Penjelasan dengan langkah-langkahKalikan angka yang telah ditemukan denganelemen yang Anda pilih. Ingat, Anda telahmemilih elemen dari baris atau kolom referensiketika Anda memutuskan baris dan kolom yangakan dicoret. Kalikan elemen ini dengandeterminan matriks 2 x 2 yang telah Andatemukan.β€’Pada contoh, kita memilih a11 yang bernilai1. Kalikan angka ini dengan -34 determinandari matriks 2 x 2 untuk mendapatkan 1*-34= simbol dari jawaban Anda. Langkahselanjutnya adalah Anda harus mengalikanjawaban Anda dengan 1 atau-1 untukmendapatkan kofaktor dari elemen yang Andapilih. Simbol yang Anda gunakan tergantungdengan letak elemen pada matriks 3 x 3. Ingat,tabel simbol ini digunakan untuk menentukanpengali elemen AndaKarena kita memilih a11 yang bertanda a +,kita akan mengalikan angka dengan +1 ataudengan kata lain, jangan diubah. Jawabanyang muncul akan sama, yaituβ€’ Cara lain untuk menentukan simbol adalahdengan menggunakan formula -1i+j yangmana i dan j adalah baris dan kolom proses yang sama untuk elemenketiga. Anda memiliki satu kofaktor lagiuntuk menentukan determinan. Hitung i untukelemen ketiga di baris atau kolom referensi merupakan cara cepat menghitungkofaktor a13 pada contoh kitaCoret baris ke-1 dan kolom ke-3 untuk4mendapatkan [24 61Determinannya adalah 2*6 - 4*4 = dengan elemen a13 -4 * 3 = -12.β€’ Elemen a13 bersimbol + pada tabel simbol,sehingga jawabannya adalah = a + a + a6 Ulangi proses ini untuk elemen kedua padabaris atau kolom referensi Anda. Kembalilahke matriks awal 3 x 3 yang Anda lingkari barisatau kolomnya sebelumnya. Ulangi proses yangsama dengan elemen tersebut⚫ Coret baris dan kolom elemen tersebut. Padakasus ini, pilih elemen a12 yang bernilai 5.Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6.Jadikan elemen yang tersisa menjadimatriks 2x2. Pada contoh kita, matriks ordo2x2 untuk elemen kedua adalah [24 721β€’ Tentukan determinan matriks 2x2 formula ad - bc. 2*2 - 7*4 = -24β€’ Kalikan dengan elemen pada matriks 3x3yang Anda pilih. -24 * 5 = -120β€’ Putuskan untuk mengalikan hasil di atasdengan -1 atau tidak. Gunakan tabel simbolatau formula -1ij Pilih elemen a12 yangpada tabel simbol. Ganti simboljawaban kita dengan -1*-120 = hasil ketiga hitungan Anda. Iniadalah langkah terakhir. Anda telahmenghitung tiga kofaktor, satu untuk setiapelemen pada satu baris atau kolom. Jumlahkanhasil tersebut dan Anda akan menemukandeterminan matriks 3 x 3.β€’ Pada contoh, determinan matriks adalah -34 +120 +-12-74 11. Carilah minor, kofaktor, adjoin, dan invers dari matriks di bawah ini tolong bantuanya yaaa ☺ kalo bener jadikan yang terbaik ya.. sukses dek 12. 20 contoh soal dan jawabanya tentang determinan matriks ordo 3x3 metode kofaktor 3Γ—3=9 betul betul betul 13. Yang merupakan transpos dari kofaktor suatu matriks adalah yaitu adjoin dari suatu matriks 14. Carilah minor,kofaktor,adjoin dan invers dari matriks di bawah ini. tolong bantuanya yaaa kalau nyatet sambil di cek ya kali aja ad salah hitung 15. gimana cara menyelesaikan perkalian matriks ordo 3x3 dengan 3x3 kyk gitu ditambah dan dikurangi baru nanti di kali aja insyalloh ktmu.. semoga membantu Apa itu kofaktor ??? Secara definisi kofaktor memang sulit untuk dijelaskan. Akan tetapi menurut dari apa yang telah saya pelajari bahwa kofaktor itu adalah salah satu tahapan dalam proses pencarian nilai invers dari suatu matriks. Untuk mencari nilai kofaktor dari suatu matrik tidak bisa langsung semerta-merta mencari kofaktor, akan tetapi harus terlebih dahulu mencari minor dari suatu matriks. Maka dari itu sudah seharusnya teman-teman membaca dahulu artikel tentang mencari minor mataris pada link di bawah ini Jika teman-teman sudah membaca artikel tentang cara mencari minor matriks ordo 3x3, maka teman-teman sudah bisa melanjutkan pembelajaran tentang cara mencari kofaktor dari suatu matirks. Kofaktor dari suatu matriks itu adalah suatu keadaan dari elemen-elemen matriks yang telah diminor matrikan yang menyatakan bahwa "apakah elemen bernilai positif atau negatif pada suatu letak tertentu apabila dikofaktorkan". Untuk menentukan kofaktor matriks harus dicari dengan rumus berikut ini KEab = -1a+b x NEab Keterangan KE Kofaktor Elemen Matriks a Baris ke-a b Kolom ke-b NE Nilai elemen Minor Matriks Contoh Tentukan kofaktor dari minor matriks berikut ini Jawaban KEab = -1a+b x NEab KE11 = -11+1 x NE11 = -12 x -3 = 1 x -3 = -3 KE12 = -11+2 x NE12 = -13 x -6 = -1 x -6 = 6 KE13 = -11+3 x NE12 = -14 x -3 = 1 x -3 = -3 KE21 = -12+1 x NE21 = -13 x -6 = -1 x -6 = 6 KE22 = -12+2 x NE22 = -14 x -12 = 1 x -12 = -12 KE23 = -12+3 x NE23 = -15 x -6 = -1 x -6 = 6 KE31 = -13+1 x NE31 = -14 x -3 = 1 x -3 = -3 KE32 = -13+2 x NE32 = -15 x -6 = -1 x -6 = 6 KE33 = -13+3 x NE33 = -16 x -3 = 1 x -3 = -3 Maka kofaktornya adalah Jadi pada intinya untuk mencari kofaktor itu adalah kita harus mencari dahulu minornya tanpa terkecuali, kemudian baru teman-teman bisa mencari kofaktornya dengan rumus yang sudah saya jelaskan diatas. Gimana sangat mudah bukan untuk menentukan kofaktor dari suatu matriks ???? Saya tunggu respon atau komen dari kalian ya, jika menurut teman-taman artikel ini bermanfaat, silahkan share artikel ini ya. Sekian artikel kali ini. Mohon maaf apabila ada salah-salah kata. Akhir kata wassalamualaikum wr. wb. Referensi Pengalaman belajar penulis. Kunjungi kumpulan artikel lainnya, dengan cara klick link menu kumpulan artikel di bawah ini AkuntansiEkonomiMatematikaMs. ExcelArtikel Terbaru Share on Jika adik-adik menemukan soal tentang Matriks dan menentukan Minor Dan Kofaktor beserta adjoinnya, Simak pembahasan serta contoh soal yang afrizatul bagikan agar mengetahui cara mencari jawaban dari soal masuk ke contoh soalnya, ada baiknya adik-adik ketahui dulu apa yang dimaksud dengan minor matrik dan kofaktor matriks terutama ketika ingin mengerjakan soal tentang invers matriks pada bidang studi Yang Dimaksud Dengan Matriks Minor?Mencari nilai minor suatu matriks Mij adalah mencari nilai determinannya dengan cara menghilangkan elemen-elemen pada baris ke-i dan elemen-elemen pada kolom jika terdapat matriks ordo 2Γ—2 maka ketika mencari nilai minor pada matriks tersebut kita mulai dari M11, M12 lalu M21 dan juga jika matriks ordo 3Γ—3, kita bisa cari minornya dari M11, M12, M13 kemudian M21, M22, M23 dan M31, M32, Yang Dimaksud Kofaktor Matriks?Kofaktor matriks merupakan matriks yang dimana elemen-elemennya adalah nilai minor dari matriks nilai elemen pada matriks kofaktor berisi nilai minor yang sudah didapatkan sebelumnya sesuai dengan posisi elemen lebih mudah, adik-adik bisa menyimak contoh soal di bawah ini!Baca juga Contoh Soal Matriks Kelas 11 Beserta Jawabannya Essay & Pilihan GandaDisini kami menggunakan 1 contoh matriks dengan ordo 3Γ—3, Jadi untuk matriks ordo 2Γ—2, 4Γ—4 dan sebagainya bisa menggunakan cara yang sama untuk mencari minor, kofaktor serta adjoin matriks A dengan ordo 3Γ—3 dengan elemen 1, 4, 3, 2, 5, 1, 3, 4, 2 Tentukan minor, kofaktor dan adjoin dari matriks A!1. Mencari Minor Matriks 3Γ—3Penyelesaian Pembahasan Pertama kita cari dulu M11 atau minor baris ke-1 dan kolom ke-1 yaitu Baris ke-1 = 1, 4, 3Kolom ke-1 = 1, 2, 3Sehingga menghasilkan matriks ordo 2Γ—2 atau elemen yang tidak tertutup yaitu 5, 1, 4, 2. Dan kita cari kesimpulannya M11 adalah determinan matriks ordo 2Γ—2 atau elemen yang tidak tertutup minor M11 maka bisa kita kalikan silang yaitu 5Γ—2 dan 1Γ—4, Dan elemen minor M11 hasilnya adalah M12, elemen yang tidak tertutup nya adalah 2, 1, 3, 2. Dan lakukan perkalian silang seperti cara M13, Ulangi cara tersebut sampai ke minor M33 atau baris ke-3 dan kolom mendapatkan hasil minor dari matriks A, sekarang kita mencari kofaktornya!2. Mencari Kofaktor Matriks 3Γ—3Penyelesaian Pembahasan Kofaktor pada matriks A berarti simbolnya kof A, Kemudian masukkan elemen minor M11 sampai perhatikan kenapa ada yang positif dan ada yang negatif? Karena mencari kofaktor pada matriks simbolnya akan seperti ini Jadi setiap elemen berbeda-beda baris pertama positif, negatif, positifbaris kedua negatif, positif, negatifbaris ketiga positif, negatif, untuk matriks A dengan ordo 3Γ—3, lalu bagaimana polanya jika matris dengan ordo 4Γ—4 atau yang lainnya?Adik-adik bisa tambahkan saja di baris pertama negatif, baris kedua positif dan baris ketiga negatif, yang penting setiap baris sudah paham, kita masukkan elemen minor yang telah kita dapatkan tadi sesuai tanda atau pola yang telah sebelum mencari kofaktor pada suatu matriks, adik-adik harus mengetahui dulu cara mencari terakhir yaitu dengan mengkalikan tanda positif atau negatif sesuai angka atau nilai pada elemen minor Mencari Adjoin Matriks 3Γ—3Berikutnya kita akan mencari adjoin matriks A tersebut, Hal ini sangat penting karena cara ini berguna untuk mencari invers suatu Pembahasan Untuk mencari adjoin pada sebuah matriks, kita cari dulu kofaktornya lalu kita transpose. Maka kesimpulannya adjoin matriks A sama dengan transpose matriks kita sudah mendapatkan hasil dari kofaktor matriks A 3Γ—3 di cara yang ke-dua sebelumnya, maka kita cukup transpose saja matriks ingat bagaimana cara mentranspose sebuah matriks? Benar, Caranya mengubah baris menjadi kolom dan kolom menjadi kita telah mendapatkan hasil transpose kofaktor matrik A atau Adjoin matriks pembahasan singkat materi tentang Matriks untuk mencari Minor Dan Kofaktor beserta adjoin dengan ordo 3Γ—3, Semoga bisa mudah dipahami dan membantu adik-adik dalam mengerjakan tugas sejenis.

cara mencari kofaktor matriks 3x3